

 Navigation

 	
 index

 	Config Actions 8.x-1.x documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/config-actions/checkouts/8.x-1.x/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/config-actions/checkouts/8.x-1.x/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Config Actions 8.x-1.x documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 getting_started.html

 Navigation

 		
 index

 		Config Actions 8.x-1.x documentation »

Getting Started

Config Actions [http://drupal.org/project/config_actions]
provides a pluggable framework for easily manipulating
configuration data via simple YAML files with the goal of creating truly
reusable software components in Drupal.

Example use cases include:

		
		Templates

		the ability to provide a configuration template file containing
variables that can be reused and replaced to create new configuration. For
example, a template for adding a certain field to a content type where the
content type isn’t yet known.

		
		Override

		the ability to easily “override” configuration provided
by core or other modules. These is not a “live” overrides system but simply a
method to import changes into the config system.

NOTE: This is a Developers module and requires creating custom modules
containing YAML files that contain the config actions to be performed.

Action Files

Actions are listed in a config_actions.yml file located in the top-level folder
of your custom module. When your module is enabled, the actions in this file
will be executed.

@TODO: A drush interface allows you to execute actions manually.

@TODO: When Drupal Updates are run, any new actions added to your file are executed automatically.

An action is a list of “option” keys and values. Various global options are
available, and additional options can be added by specific plugins.

Nested Actions

Actions can be nested within each other. Using the actions option you can
list additional sub-actions to be executed. All options from the main parent
action are inherited in each sub-action but can be overridden by the sub-action.

For example, the top-level action can specify the source and dest options
then each sub-action could specify different plugins, or different replace
option values, or even override with different source or dest values.
This allows related actions to be grouped and reduces the amount of repeated
text between similar actions.

When nesting or naming actions, each new action within the actions list
requires a unique id key.

For example:

actions:
 myaction1:
 option1: value1
 option2: value2
 myaction2:
 option1: value1
 option2: value2
 ...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

example_template.html

 Navigation

 		
 index

 		Config Actions 8.x-1.x documentation »

 The following action data (placed in config_actions.yml) will load templates
within the config/templates folder (see the tests/modules/test_config_actions
test module for these template files):

this contains any global variables that are available to any template
replace:
 "%field_name%": "myproject_image"

Here are some sample actions
actions:

Example of "template" plugin

Replace any tokens in a template to create a new config item
 field_storage:
 # name of yml file in config/templates folder
 source: "field.storage.node.image.yml"
 dest: "field.storage.node.%field_name%"

 field_instance:
 source: "field.field.node.image.yml"
 dest: "field.field.node.%bundle%.%field_name%"
 actions:
 article:
 replace:
 "%bundle%": article
 page:
 replace:
 "%bundle%": page

The top-level action has a replace option for the global %field_name%
variable. The % characters are used in the template to specify a replaceable
variable, but any delimiter could be used as needed. Avoid using [] or {} to
specify variables since those could be interpreted as YAML arrays.

Next, the top-level action uses the actions option to specify a list of
sub-actions. These sub-actions will inherit the global %field_name%
replacement.

The field_storage sub-action (where field_storage is just a unique value
within this array used to give a name to the sub-action) loads a source
template *.yml file and outputs the config to a config id that will create a
new field_storage entity in Drupal. %field_name% will be replaced with
myproject_image.

The field_instance sub-action sets a source *.yml file and a destination
and then has it’s own sub-action list for each bundle that needs to have a
field instance created. Each sub-action (article and page) has it’s own
value of the %bundle% variable that is used in the template replacement.

If this action file is executed, a field called myproject_image will be
created and added to the page and article content types.

But you can also call this action from your own module and override the
%field_name% variable to create other fields. You could create different
template actions for different types of fields.

For example, you could create a “Location Feature” that has a template for how
to add geofield data to a content type. Rather than saving the specific
configuration for the content type, field storage, and field instances in a
feature that would still contain your hardcoded field names and content type
names, you can use Config Actions to create template “features” that can be
reused across your projects with different field names and content types.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Config Actions 8.x-1.x documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/comment-bright.png

plugins.html

 Navigation

 		
 index

 		Config Actions 8.x-1.x documentation »

Plugins

Additional plugins can be written to extend Config Actions.

Some plugins implement the ValidatePaths trait which adds additional options
for specifying a path into the source data and validating that path. These
options are described later.

The plugins currently available as part of the base module are:

		default

		The default plugin used when no other is specified. This plugin
simply reads the config from the source, performs string replacement in
the keys and values of the data, and saves the result to the dest.

		change

		Uses ValidatePaths. Changes the data at the source to the
specified value option.

		add

		Uses ValidatePaths. Adds a new value at the specified location in
the source. Typically used to add additional array items.

		delete

		Uses ValidatePaths. Clears the data at the specified location in
the source, or completely deletes a specific configuration item.

		include

		Loads and runs a specific action from a different module.
Allows the replace values to override those specified in the other module.
Used to create reusable actions in your module that can be used by other
modules.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

options.html

 Navigation

 		
 index

 		Config Actions 8.x-1.x documentation »

Global Options

Actions consist of a simple array of key/value options. The following global
keys are recognized:

		plugin

		Specifies the name of the Config Actions Plugin to be used to
execute the action. If omitted, the “Default” plugin is used.

		source

		The source data specifier. Can be a config id, a *.yml file, or
a raw data array. Contains the source config data to be manipulated.

		dest

		The destination specifier. Can be a config id or a *.yml file. The
modified data will be stored to this location. If omitted, the source is
used as the destination.

		replace

		An optional key/value array that contains string replacement
patterns and values. Can be used to replace patterns in the source data or
in any other option value.

		replace_in

		An optional array listing the options that the replace is
performed in. The default value of this depends on the specific plugin
being used. The array given here replaces the default list for the current
action.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

path_validation.html

 Navigation

 		
 index

 		Config Actions 8.x-1.x documentation »

Path Validation

Some plugins specify a path within the source data. A path is simply an array
of keys to be traversed within the source tree. The following options are
added by this trait:

		path

		The array of keys used to specify the path in the source data

		current_value

		The optional current value in the source path. Used to
ensure that the specified value exists in the source before manipulating it.
This must be specified to enable path validation.

		value_path

		An optional path to be used instead of the normal path for
validating the current_value. Used when changing the value in path but
testing current_value in a different value_path.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

source_plugins.html

 Navigation

 		
 index

 		Config Actions 8.x-1.x documentation »

Source Plugins

The source and dest use a second plugin system used to load and save
configuration data. The provided plugins are:

		id

		The specifier is a string value that points to a specific config
item id within the active config storage.

		file

		The specifier is a *.yml file along with optional path. If no path
is given, the config/templates directory of the current module is used.

Normally the source plugin type is determined from the string specifier itself.
For example, if the string ends in .yml then the file plugin is used.

To override the source plugin type, use the *_type option (source_type or
dest_type) with the name of the plugin.

The source can also be a raw array of configuration data. This data is passed
to the plugin system in case a complex plugin needs to parse the additional
data. But since the id and file plugins both expect a string value, any
array value is currently passed through as raw data.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

